
#### The Fort Collins Renewable and Distributed Systems Integration Project in Colorado



#### **Presentation Overview**

- The Fort Collins RDSI Demonstration Project
  - Background
  - Participants
  - Breakdown of assets
  - Demonstration results
  - Lessons learned



Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

# Where is Fort Collins, CO?



10/16/12

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

# The Smart Grid



- Use of digital information and controls
- Dynamic optimization and cyber security of the grid
- Widespread deployment of distributed energy resources including renewable sources
- Use of demand response and peak-shaving technologies
- Deployment of smart appliances and technologies
- Providing customers with timely information and control options

Renewable and Distributed Systems Integration (RDSI) Background

- In 2008, US DOE awarded \$55M to 9 RDSI projects across US (overall >\$100M).
- Focus on integrating: renewable energy, distributed generation, energy storage, thermally activated technologies, and demand response into the grid.
- Main goals:
  - Encourage use of distributed resources to provide power during peak load periods.
  - <sup>°</sup> Minimum 15% reduction in peak load on distribution feeder or substation.



# RDSI Background – Fort Collins

- DOE awarded \$6.3M
- Local entities contributed cost share totaling \$5.1M.
- CO Governor's Energy Office participation was \$250K.
- City of Fort Collins is project lead.
- Main goals:
- Demonstrate coordinated system of mixed distributed energy resources
- Reduce peak load by >20% 30% on two feeders of total capacity 15MW
- Intentional islanding



# FortZED: Fort Collins Zero Energy District

| P                                       | roject Lead                                                                 | Fort Collins                    |
|-----------------------------------------|-----------------------------------------------------------------------------|---------------------------------|
| City of Fort Collins                    | Prime Contractor                                                            |                                 |
| Fort Collins Utilities                  | Utility Company                                                             | Colorado                        |
| <b>Demo Sites</b>                       | Resource                                                                    | State                           |
| City of Fort Collins                    | DG, DSM, PHEV, and Thermal Storage                                          |                                 |
| Colorado State<br>University Facilities | DG, DSM, and Thermal Storage                                                | Test and Development Laboratory |
| InteGrid/EECL                           | Fuel Cell, MicroTurbine,<br>Conventional DG, Wind Sim, SC/SLC<br>and others | COMMITTED TO EXCELLENCE         |
| Larimer County                          | Photovoltaics and DSM                                                       | FORT                            |
| New Belgium Brewing                     | Photovoltaics, DG, and DSM                                                  | 7ED                             |

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

10/16/12

#### Who

| Tech Partner              | Contribution                                                      |                                             |
|---------------------------|-------------------------------------------------------------------|---------------------------------------------|
| Advanced Energy           | Photovoltaic Inverter                                             | Better Technology. Better Results.          |
| Brendle Group             | Demand Side Management and<br>Program Development                 |                                             |
| Colorado State University | Robust Controls and PHEV R&D                                      |                                             |
| Eaton                     | Switchgear/Power Components and<br>Small Generator Switchgear R&D |                                             |
| InteGrid                  | Platform for Controls R&D, DER<br>Integration and Simulation      | N N                                         |
| Spirae                    | Smart Grid Platform – DER/Power<br>Management System              |                                             |
| VanDyne Super Turbo       | Diesel Gensets for added project<br>Power                         |                                             |
| Woodward Governor         | Power Management and Mixed Fuel<br>R&D                            | Powering the way to greater fuel efficiency |

FORT

### The Projects – Load Shedding

- Turn off pumps for fountains
- Reduce fan speed in HVAC
- Increase thermostat set-points during cooling season
- Lock out stages of compressors in building cooling systems
- Lock out plug-in hybrid electric vehicles
- Thermal storage to shift cooling load



 CSU Water Fountain

 10/16/12
 Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe
 9

# The Projects – Local Generation

- Solar photovoltaic (PV) projects
- Local backup generators
- Dual-fuel (natural gas/biogas) generator





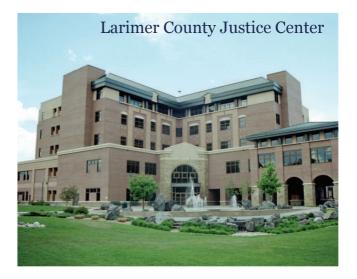
10/16/12

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

#### Project Highlights – CSU Solar PV Array

- 19 kilowatt photovoltaic (PV) system
- Ability to back-feed electricity to grid during peak demand
- Renewable energy source reduces over **50,000** pounds of greenhouse gases per year

#### **CSU Engineering Building**




10/16/12

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

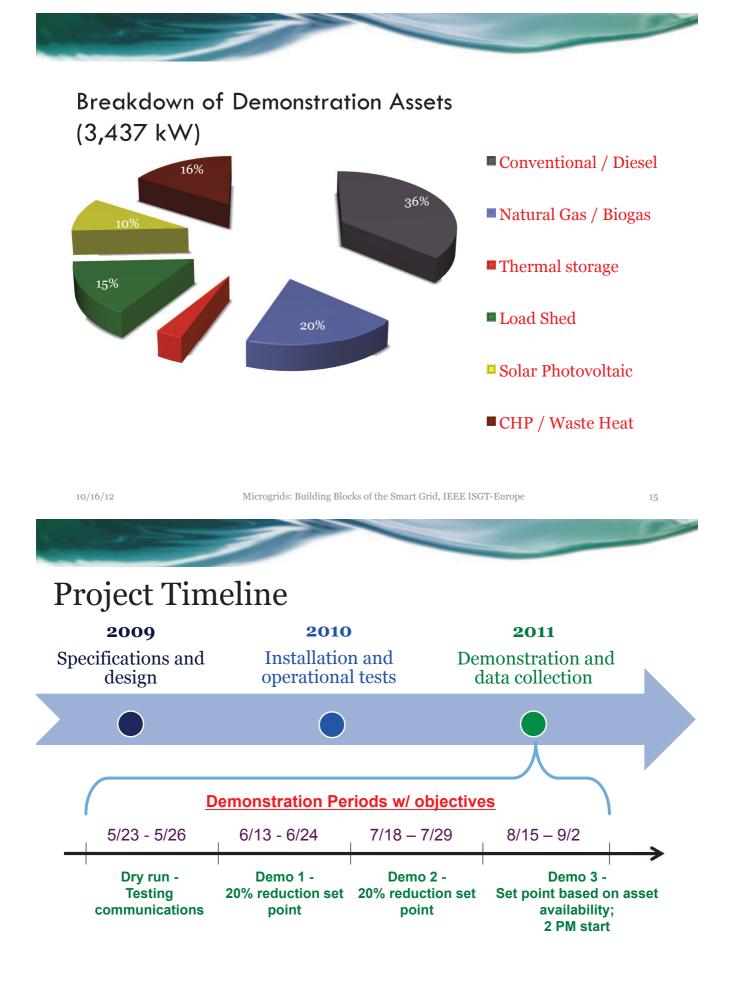
### Project Highlights – Larimer County Justice Center Fountain Control

- Shut off fountain water pump during times of peak electric demand
- Controlled with a Building Automation System
- Demonstration run May-October 2011

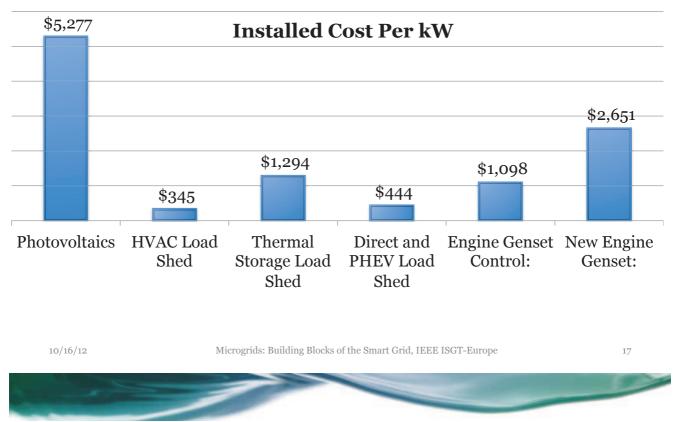


# Project Highlights – New Belgium Brewing

- Thermal Storage Generate cold water at night when it is easier to cool, eliminating need to run compressors during the day.
- Two engine generators capable of turning biogas from wastewater treatment into 792 kW of dispatchable electric power.




 10/16/12
 Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe
 13


# Project Highlights – Integrid/EECL

- Several generation assets form a microgrid, capable of simulating islanding, variable contributions from renewables, and spinning reserve
- 2 x 80 KW gensets
  - $_{\circ}$  Aircooled
  - Used as spinning reserves
  - PV leveling



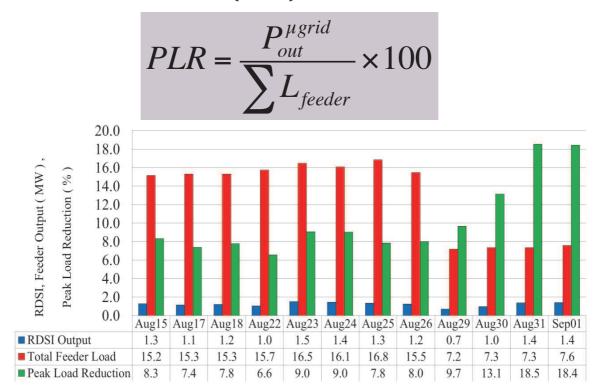


#### Economic Comparison of Assets



# Data Reduction

- Raw data from SCADA
  - ° CSV files for both command and power vectors for each asset
  - Unevenly time-stamped data (resolution = 1s)
  - Any analysis requires evenly time stamped data
- Data handling and preparation
  - $_{\circ}$  Data sampled
  - $_{\circ}~$  Only test run data extracted for further analysis
  - $_{\circ}~$  Information fields added to structures as required
  - ° Command data reconciled with power data


# FortZED RDSI Capacity Summary

|                                         | Asset availability (kW) |                      |
|-----------------------------------------|-------------------------|----------------------|
| Location                                | Planned                 | During demo period 3 |
| City of Fort Collins Operation Services | 849                     | 785                  |
| CSU Dept. of Facilities Management      | 1201                    | 746                  |
| CSU Engines and Energy Conv. Lab        | 1335                    | 325                  |
| InteGrid Laboratory                     | 320                     | 220                  |
| Larimer County Facilities Dept.         | 29                      | 34                   |
| New Belgium Brewing Co.                 | 1279                    | 1279                 |
| Grand total                             | 4958                    | 3389                 |

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

10/16/12





### **Performance Metrics**

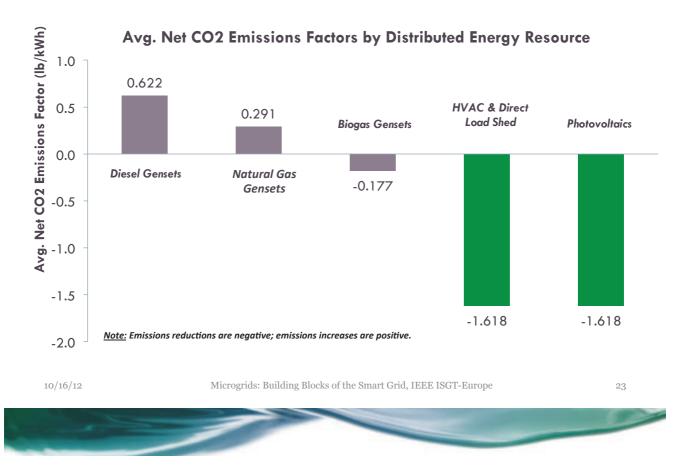
- Reliability
  - Probability of success or success ratio
  - Performance over time
- Calculated using NERC criteria in North America

| For individual assets                                                                                                         | For group of assets                                     |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Starting Reliability<br>Service Factor<br>Average Run Time<br>Net Capacity Factor<br>Net Output Factor<br>Availability Factor | Weighted Service Factor<br>Weighted Availability Factor |

10/16/12

Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

#### 21


#### **Performance metrics**

- <u>Two new metrics also proposed</u>
  - Peak reserve ratio PRR(t)
  - Microgrid peak reserve ratio –*MPRR*(*t*)

$$PRR(t) = \frac{P_{reserve}^{\mu grid}(t)}{\sum L_{feeder}(t)} = \frac{P_{cap}^{\mu grid}(t)}{L_{feeder}^{net}(t) + P_{out}^{\mu grid}(t)}$$
$$MPRR(t) = \frac{P_{cap}^{\mu grid}(t)}{P_{out}^{\mu grid}(t)} - 1$$

 Marks Nerver is a graduity indext in the formation of the constraints of the constraint of the co

# **Emissions Comparison of Assets**

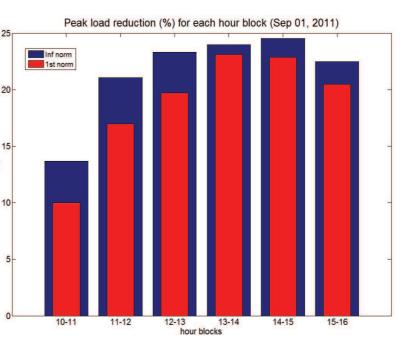


# Lessons learned

- FortZED RDSI project successfully demonstrated peak load reduction capabilities of a microgrid
- Technical lessons learned
  - Protection engineering is non-trivial
  - Reconciliation of feeder level data with asset level data
  - Equipment upgrade issues
  - Asset dispatch method is needed
- Financial and programmatic lessons also learned
- New metrics formulated for microgrid performance assessment and planning

#### Acknowledgements

- Steve Brunner, Senior Engineer, Brendle Group
- Gerry Duggan, Robert Griffin, Mayank Panwar, CSU
- Wade Troxell, Associate Dean for Research and Economic Development, College of Engineering, CSU
- Dan Zimmerle, Power Systems R&D Manager, InteGrid, CSU
- Various FortZED RDSI participants




More information: FortZED- http://fortzed.com YouTube- http://www.youtube.com/watch?v=Uj4Yjc\_xtAQ Microgrids: Building Blocks of the Smart Grid, IEEE ISGT-Europe

10/16/12

# Peak Load Reduction

- Approach-I
  - Infinite norm on hour-wise basis
- Approach-II
- PLR (%) 。 1<sup>st</sup> norm on hour-wise basis

