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Introduction 

This work is a motivated  by real problems arising from industry projects and on-going 

cooperation with PV inverter manufacturer as well as distribution network operators 

(DNOs) on a national and international level.  

 

Target: Determination / enactment to integrate more renewable energy strategies from a 

technological, economical and not least political point of view.  

 

Various scenarios are of interest and underlie certain applicable safety and quality 

standards, respectively (LV, MV). 

§ Safety standards: DIN VDE V 0124-100 (LV), FGW TR3 Rev. 23 (MV) 

§ Quality standards: VDE-AR-N4105:2011-08  (LV), FGW TR3 Rev. 22 (MV) 

 

Profound knowledge and actual discussions in optimization or prototyping projects of PV 

inverters referred to state-of-the-art problems are adducted for an expanding range of 

application of possible PHIL tests . 
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Topologies of LV Grids 

The implementation of PHIL tests environment 

enforces the use of a dedicated power amplifation 

units (PA).  

 

§ Inherent ‘closed-loop originality‘ of PHIL 

simulation characterised by: 

§ Time delay introduced by real-time system 

(RTS) 

§ Dynamic behaviour of the PA 

§ Choice of interface algorithm (IA) 

§ Measurement equipment used (I/O, transducers) 

 

§ Consequences:  

§ Stability considerations (Nyquist criterion) 

§ Choice of IA (accuracy, stability, …) 

§ Choice of PA (availability, use case, costs, …) 

 

§ Power Interfaces (PIs) have to chosen 

according to the application in PHIL  
6 18.10.2012 
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Topologies of LV Grids 

Low voltage grid topology 

translated into PHIL simulation 

system: 

§ MIMO ITM PIs (ITM) 

§ 3-ph grid simulation 

§ Grid impedances (Node a/b) 

§ Neutral impedances in 

hardware (air coils and 

resistances) 

§ Line impedances in PHIL 

(VROPS) 

§ PV inverters 

§ Single phase units (4kW, 

230V/50Hz) 

§ PQ control method 

implemented: Q(U) 

§ Sourced by PV array 

simulators (PVAS3) in 

hardware 

  7 18.10.2012 

ZaL1

ZaL2

ZaL3

Z1N

AC 

Sim

Inv

1

Inv

2

ZbL1

Reference 

impedance a b

ZbN

Modelling of Components 
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Modelling different filter designs: 

§ Signal Filters: 

§ Used for feedback current/voltage filtering 

§ By default in the system control loop 

§ Examples: typically LP and BP filters 

§ AC Grid Filters: 

§ Different Topologies used (standard literature) 

§ By default connected to PHIL simulation 

§ Examples: typ. Pi- or T section filters implemented 

§ Power Output Filters:  

§ Output filter of the bridge (depending on topology) 

§ Get activated during simulation (relais) 

§ Examples: typ. LC or LCL filters 

 

Important for stability and accuracy evaluations (Nyquist) 

→ see Viehweider A, Lauss G, Lehfuss F. System Theoretic Aspects of Stability Determination 

on Linear Power Hardware-in-the-Loop Simulations. Elsevier IJEPES-S-10-00636. 
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Modelling of Components 
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Modelling of the different PQ control methods of PV 

inverters:  

 

§ Fixed power factor (absolute, relative set-value) 

§ Cosφ(P) control 

§ Cosφ(U) control 

§ Q(U), Q(P) 

§ Dynamic control (free programmable) 

 

Block diagram of PQ control implementation 

PQ control parameter for the Q(U)-

method implemented:  

 

§ Averaging time (grid cycles): 

 [1; 64] 

§ Reactive gradient (ΔQ / Δt) 

 [5; 200] 

PQ Control Results 
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Use case:  instabilities of PQ control  

(uncontrolled states) 
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Interfacing Algorithms for PHIL 

 
SISO interface algorithms -Voltage 

& Current (DIA) Type 

 

§ ITM … current controlled voltage 

source (driven by the measured 

current at HuT) 

 

 

 

§ PCD … characterized by 

considering an impedance that 

exists on the software as well as on 

the hardware side of the simulation 

 

 

§ DIM … insertion of an additional 

impedance on the software side 

only (damping impedance)  
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Interfacing Algorithms for PHIL 

 
MIMO interface algorithms 

-Voltage & Current Type 

 

§ ITM → robust method, 

easy to implement 

(reduced accuracy) 

 

 

§ PCD → additional 

hardware necessary 

 

 

§ DIM → equal damping 

impedance on soft- and 

hardware side; not realistic 

assumption 
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UseCase – Grid Controller 
Development and verification  

of grid controller 
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UseCase – (P)HIL 
PHIL / CHIL In-the-loop testing of the parameter setup (Q/P control)  

for small-scale grid-tie generators (PV inverters) 
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The new AIT SimTech Laboratory offers an excellent environment for testing, verification 

and R&D in the field of large scale DG/RES integration, and Smart Grids applications. 

AIT SimTech Laboratory  

(to be inaugurated  end 2012) 

SIMTECH laboratory - concept  

§ DR component and systems testing 

with highly flexible grid and primary 

energy source (e.g. PV) emulation 

§ Electrical interconnection, functionality 

and performance testing according to 

standards 

§ Simultaneous testing of power and 

communication interfaces of DR 

components 

§ Power-Hardware-in-the-loop (PHIL) 

environment 

§ Simulation and testing of single 

components and whole generation 

systems / plants 

§ Emulating smart grids scenarios 
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§ Grid simulation 

§ 2 independent high bandwidth Grid 

Simulation Units: 0..480 V ; 3~, 800 kVA 

§ 3 independent laboratory grids, which can 

be operated in grounded/isolated mode 

§ 3-phase balanced or unbalanced operation 

§ Capabilities to perform LVRT and FRT 

testing 

 

§ DC Sources  

§ 5 independent dynamic PV-Array 

Simulators: 1500 V, 1500 A, 960 kVA 

 

§ Line impedance emulation 

§ Adjustable line impedances for various LV 

network topologies: meshed, radial or ring 

network configuration 

 

SIMTECH laboratory – electrical 

§ Adjustable loads for active and 

reactive power 

§ Freely adjustable RLC loads up to 

1MW, 1MVAr (cap. and ind.) 

§ component laboratory with highly 

flexible grid and primary energy 

source (e.g. PV) emulation (LV up to 

800 kVA) 

§ Parallel & serial components 

22 23.03.2012 

§ Environmental simulation 

§ Test chamber for performance and 

accelerated lifetime testing 

§ Full power operation of equipment under 

test inside chamber 

§ Max. footprint of equipment under test: 

3,60 x 2,60 x 2,80 m LxWxH 

§ Temperature range -40 C..+120 C 

§ Humidity range: 10%..98 % r.H. 

 

§ General Specification 

§ Floor space: 400 m² 

§ Indoor and Outdoor test areas suitable for 

ISO containers 

 

AIT SimTech 

SIMTECH laboratory – mechanical 

§ Power Hardware-in-the-loop (PHIL) 

environment 

§ Multicore Opal-RT Real-Time Simulator 

§ P-HIL and C-HIL experiments at full 

power in a closed control loop 

 

§ DAQ and Measurement  

§ Multiple high precision Power Analyzers 

with high acquisition rate 

§ Simultaneous sampling of 

asynchronous multi-domain data input 
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§ Different components in single and three phase lv grids are under investigation; 

focus is on stability issues for active / reactive power control issues 

 

§ Nowadays, not all LV topologies can be run/translated into PHIL simulation 

setup; complexity of MIMO systems are challenging (stability).  

 

§ In Future, more complex lv grid scenarios should be able to be modeled and run 

in PHIL simulation (MIMO, advanded IA) 

 

 

Outlook: 

§ More detailled investigations on PHIL test components (modeling) will be done in 

order to optimize simulation characteristics (stability, accuracy, BW, …)  

 

§ Comparison with real tests (lab, field) will give a better understanding and 

represents a verification.   

24 18.10.2012 

Conclusions 
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